psfun_d_lanczos Interface

interface

Simple polynomial method based on the Lanczos orthogonalization procedure, the method builds a basis for the Krylov subspace


Called by

interface~~psfun_d_lanczos~~CalledByGraph interface~psfun_d_lanczos psfun_d_lanczos proc~psfun_d_parallel_apply psfun_d_parallel_apply proc~psfun_d_parallel_apply->interface~psfun_d_lanczos

public module subroutine psfun_d_lanczos(fun, a, desc_a, y, x, eps, info, itmax, itrace, istop, iter, err, res)

Arguments

Type IntentOptional AttributesName
type(psfun_d_serial), intent(inout) :: fun

Function object

type(psb_dspmat_type), intent(in) :: a

Distribute sparse matrix

type(psb_desc_type), intent(in) :: desc_a

Descriptor for the sparse matrix

type(psb_d_vect_type), intent(inout) :: y

Output vector

type(psb_d_vect_type), intent(inout) :: x

Input vector

real(kind=psb_dpk_), intent(in) :: eps

Requested tolerance

integer(kind=psb_ipk_), intent(out) :: info

Output flag

integer(kind=psb_ipk_), intent(in), optional :: itmax

Maximum number of iteration

integer(kind=psb_ipk_), intent(in), optional :: itrace

Trace for logoutput

integer(kind=psb_ipk_), intent(in), optional :: istop

Stop criterion

integer(kind=psb_ipk_), intent(out), optional :: iter

Number of iteration

real(kind=psb_dpk_), intent(out), optional :: err

Last estimate error

real(kind=psb_dpk_), intent(out), optional allocatable:: res(:)

Vector of the residuals

Description

Simple polynomial method based on the Lanczos orthogonalization procedure, the method builds a basis for the Krylov subspace

and approximates ,for , the first vector of the canonical base of , and the Symmetric tridiagonal matrix given by .