! BSD 3-Clause License ! ! Copyright (c) 2020, Fabio Durastante ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! 3. Neither the name of the copyright holder nor the names of its ! contributors may be used to endorse or promote products derived from ! this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. submodule (psfun_utils_mod) psfun_d_utils_mod !! Real variants of the utils functions use psb_base_mod implicit none contains module function ellipkkp(L) result(K) !! Complete elliptic integral of the first kind, with complement. !! Returns the value of the complete elliptic integral of the first kind, !! evaluated at \(M=\exp(-2\pi L)\), \(0 < L < \infty\), and the !! complementarity parameter \(1-M\). use psb_base_mod implicit none real(psb_dpk_), intent(in) :: L real(psb_dpk_) :: K(2) ! Local variables real(psb_dpk_) :: M,a0,a1,b0,b1,c1,w1,s0,MM integer(psb_ipk_) :: i1 ! When M=exp(-2 π L) ≈ 0, use an O(M) approximation if(L > 10) then K(1) = DPI/2_psb_dpk_ K(2) = DPI*L + log(4.0_psb_dpk_) return end if M = exp(-2.0_psb_dpk_*DPI*L) a0 = 1.0_psb_dpk_ b0 = sqrt(1-M) s0 = M i1 = 0 MM = 1.0_psb_dpk_ do while (MM > EPSILON(MM) ) a1 = (a0+b0)/2.0_psb_dpk_ b1 = sqrt(a0*b0) c1 = (a0-b0)/2.0_psb_dpk_ i1 = i1 + 1 w1 = (2.0_psb_dpk_**i1)*(c1**2) MM = w1 s0 = s0 + w1 a0 = a1 b0 = b1 end do K(1) = DPI/(2.0_psb_dpk_*a1) a0 = 1.0_psb_dpk_ b0 = sqrt(M) s0 = 1-M i1 = 0 MM = 1.0_psb_dpk_ do while (MM > EPSILON(MM) ) a1 = (a0+b0)/2.0_psb_dpk_ b1 = sqrt(a0*b0) c1 = (a0-b0)/2.0_psb_dpk_ i1 = i1 + 1 w1 = (2.0_psb_dpk_**i1)*(c1**2) MM = w1 s0 = s0 + w1 a0 = a1 b0 = b1 end do K(2) = DPI/(2.0_psb_dpk_*a1) return end function ellipkkp module subroutine d_ellipj(u,L,sn,cn,dn) !! Returns the values of the Jacobi elliptic functions evaluated at double !! argument u and parameter \(M = \exp(-2 \pi L)\), \(0 < L < \infty\). !! For \(M = K^2\), and \(K\) the elliptic modulus. ! real(psb_dpk_), intent(in) :: u real(psb_dpk_), intent(in) :: L real(psb_dpk_), intent(out) :: sn,cn,dn real(psb_dpk_) :: m m = exp(-2.0_psb_dpk_*DPI*L) call sncndn( u, m, sn, cn, dn ) return end subroutine module function horner(coeffs, x) result (res) !! Apply Horner rule to evaluate a polynomial use psb_base_mod implicit none real(psb_dpk_), dimension (:), intent (in) :: coeffs real(psb_dpk_), intent (in) :: x real(psb_dpk_) :: res ! Local Variable integer :: i res = 0.0_psb_dpk_ do i = size(coeffs), 1, -1 res = res * x + coeffs (i) end do return end function horner end submodule