psfun_utils_mod.f90 Source File


Files dependent on this one

sourcefile~~psfun_utils_mod.f90~~AfferentGraph sourcefile~psfun_utils_mod.f90 psfun_utils_mod.f90 sourcefile~psfun_z_quadrature_mod.f90 psfun_z_quadrature_mod.F90 sourcefile~psfun_z_quadrature_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_base_quadrature_mod.f90 psfun_base_quadrature_mod.f90 sourcefile~psfun_z_quadrature_mod.f90->sourcefile~psfun_base_quadrature_mod.f90 sourcefile~utiltest.f90 utiltest.f90 sourcefile~utiltest.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_d_quadrature_mod.f90 psfun_d_quadrature_mod.F90 sourcefile~psfun_d_quadrature_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_d_quadrature_mod.f90->sourcefile~psfun_base_quadrature_mod.f90 sourcefile~psfun_z_quadrules_mod.f90 psfun_z_quadrules_mod.f90 sourcefile~psfun_z_quadrules_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_z_quadrules_mod.f90->sourcefile~psfun_z_quadrature_mod.f90 sourcefile~psfun_d_utils_mod.f90 psfun_d_utils_mod.f90 sourcefile~psfun_d_utils_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_z_utils_mod.f90 psfun_z_utils_mod.f90 sourcefile~psfun_z_utils_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_base_quadrature_mod.f90->sourcefile~psfun_utils_mod.f90 sourcefile~quadraturetest.f90 quadraturetest.F90 sourcefile~quadraturetest.f90->sourcefile~psfun_utils_mod.f90 sourcefile~psfun_quadrature_mod.f90 psfun_quadrature_mod.f90 sourcefile~quadraturetest.f90->sourcefile~psfun_quadrature_mod.f90 sourcefile~psfun_quadrature_mod.f90->sourcefile~psfun_z_quadrature_mod.f90 sourcefile~psfun_quadrature_mod.f90->sourcefile~psfun_d_quadrature_mod.f90 sourcefile~psfun_quadrature_mod.f90->sourcefile~psfun_base_quadrature_mod.f90

Contents

Source Code


Source Code

! BSD 3-Clause License
!
! Copyright (c) 2020, Fabio Durastante
! All rights reserved.
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions are met:
!
! 1. Redistributions of source code must retain the above copyright notice, this
!    list of conditions and the following disclaimer.
!
! 2. Redistributions in binary form must reproduce the above copyright notice,
!    this list of conditions and the following disclaimer in the documentation
!    and/or other materials provided with the distribution.
!
! 3. Neither the name of the copyright holder nor the names of its
!    contributors may be used to endorse or promote products derived from
!    this software without specific prior written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
module psfun_utils_mod
  !! This modules contains some utility function that are used in the library.
  use psb_base_mod
  implicit none

  ! Fixed parameters
  real(psb_dpk_), private, parameter :: DPI = 4.0_psb_dpk_*ATAN(1.0_psb_dpk_) !! Double precision \(\pi\) for internal usage

  interface ellipkkp
    !! Complete elliptic integral of the first kind, with complement.
    !! Returns the value of the complete elliptic integral of the first kind,
    !! evaluated at \(M=\exp(-2\pi L)\), \(0 < L < \infty\), and the
    !! complementarity parameter \(1-M\).
      module function ellipkkp(L) result(K)
        real(psb_dpk_), intent(in)  :: L
        real(psb_dpk_)              :: K(2)
      end function
  end interface ellipkkp

  interface ellipj
    !! Returns the values of the Jacobi elliptic functions evaluated at `real`
    !! or `complex` argument u and parameter \(M = \exp(-2 \pi L)\),
    !! \(0 < L < \infty\). For \(M = K^2\), and \(K\) the elliptic modulus.
    module subroutine d_ellipj(u,L,sn,cn,dn)
      real(psb_dpk_), intent(in)    :: u
      real(psb_dpk_), intent(in)    :: L
      real(psb_dpk_), intent(out)   :: sn,cn,dn
    end subroutine
    recursive module subroutine z_ellipj(u,L,sn,cn,dn,flag)
      complex(psb_dpk_), intent(in)    :: u
      real(psb_dpk_), intent(in)       :: L
      complex(psb_dpk_), intent(out)   :: sn,cn,dn
      logical, optional, intent(in)    :: flag
    end subroutine
  end interface ellipj

  interface horner
    !! Apply Horner rule to evaluate a polynomial
    module function horner(coeffs, x) result (res)
      real(psb_dpk_), dimension (:), intent (in) :: coeffs !! Coefficient of the polynomial
      real(psb_dpk_), intent (in) :: x !! Where to evaluate
      real(psb_dpk_) :: res !! Result
    end function
  end interface horner

contains

end module psfun_utils_mod